
INDIAN SCHOOL MUSCAT

Some Points to Keep in Mind ……

Please keep your MIC and WEBCAM in MUTE mode until your

teacher asks you to unmute it.

Please take down notes.

Ask doubts as and when it comes and write in the CHAT box.

Don’t post any non-academic matter in the chat box. Stringent action

will be initiated.

 Some times, technology fails, don’t panic, hold on - we will be back.

INDIAN SCHOOL MUSCAT

CLASS XI

Information Technology(802)

Chapter : Fundamentals of Java
Programming

Teacher: Mr. Saju Jagannath

Object-oriented programming (OOP) is a programming

paradigm based on the concept of "objects", which can

contain data and code: data in the form of fields (often

known as attributes or properties), and code, in the form of

procedures (often known as methods).

A feature of objects is that an object's own procedures can

access and often modify the data fields of itself (objects have
a notion of this or self). In OOP, computer programs are

designed by making them out of objects that interact with

one another. OOP languages are diverse, but the most

popular ones are class-based, meaning that objects

are instances of classes, which also determine their types.

Many of the most widely used programming languages (such

as C++, Java, Python, etc.)

WRITE

https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Field_(computer_science)
https://en.wikipedia.org/wiki/Method_(computer_science)
https://en.wikipedia.org/wiki/This_(computer_programming)
https://en.wikipedia.org/wiki/Class-based_programming
https://en.wikipedia.org/wiki/Instance_(computer_science)
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Data_type

JAVA PROGRAMMING LANGUAGE

Java programming language was originally developed by

Sun Microsystems which was initiated by James Gosling and

released in 1995 as core component of Sun Microsystems’

Java platform. With the advancement of Java and its

widespread popularity, multiple configurations were built to

suite various types of platforms. Ex: J2EE for Enterprise

Applications, J2ME for Mobile Applications. Sun

Microsystems has renamed the new J2 versions as Java

Standard Edition(SE), Java Enterprise Edition(EE) and Java

Micro Edition(ME) respectively. Java is guaranteed to

be Write Once, Run Anywhere.

WRITE

JAVA PROGRAMMING LANGUAGE

Characteristics of Java

• Object Oriented: In Java, everything is an Object. Java

can be easily extended since it is based on the Object

model.

• Platform independent: Unlike many other programming

languages including C and C++, when Java is compiled, it

is not compiled into platform specific machine, rather into

platform independent byte code. This byte code is

distributed over the web and interpreted by virtual

Machine (JVM) on whichever platform it is being run.

• Simple: Java is designed to be easy to learn. If you

understand the basic concept of OOP Java would be

easy to master.

WRITE

JAVA PROGRAMMING LANGUAGE

• Secure: With Java’s secure feature it enables to develop

virus-free, tamper-free systems. Authentication

techniques are based on public-key encryption.

• Architectural-neutral :Java compiler generates an

architecture-neutral object file format which makes the

compiled code to be executable on many processors, with

the presence of Java runtime system.

• Portable: Being architectural-neutral and having no

implementation dependent aspects of the specification

makes Java portable. Compiler in Java is written in ANSI

C with a clean portability boundary which is a POSIX

subset.

WRITE

JAVA PROGRAMMING LANGUAGE

• Robust: Java makes an effort to eliminate error prone

situations by emphasizing mainly on compile time error

checking and runtime checking.

• Multithreaded: With Java’s multithreaded feature it is

possible to write programs that can do many tasks

simultaneously. This design feature allows developers to

construct smoothly running interactive applications.

• Interpreted: Java byte code is translated on the fly to

native machine instructions and is not stored anywhere.

The development process is more rapid and analytical

since the linking is an incremental and light weight

process.

WRITE

JAVA PROGRAMMING LANGUAGE

• High Performance: With the use of Just-In-Time

compilers, Java enables high performance.

• Distributed: Java is designed for the distributed

environment of the internet.

• Dynamic: Java is considered to be more dynamic than C

or C++ since it is designed to adapt to an evolving

environment. Java programs can carry extensive amount

of run-time information that can be used to verify and

resolve accesses to objects on run-time.

WRITE

JAVA PROGRAMMING LANGUAGE

• Byte code: A byte code is machine instruction that the

Java compiler generates and Java interpreter executes.

When the compiler compiles a .java file, it produces a

series of byte codes and stores them in a .class file. The

Java interpreter (JVM) can execute the byte codes stored

in the .class file.

• JVM: Java Virtual Machine (JVM) is a program which

behaves as interpreter and translates the byte code into

machine language as they go called just in time

compilation.

WRITE

JAVA PROGRAMMING LANGUAGE

• Source Code: The core program or text which is written in a

language like C, C++ or Java is called source code.

• Object Code: The program which only is understood by the

computer in the form of machine instructions or binary

instructions called object code. In Java JVM is used to generate

object code in the form of byte code.

• RAD: Rapid Application Development is software

programming technique that allows quick development of

software application.

WRITE

INTRODUCTION TO OBJECT OREINTED PROGRAMMING

About NetBeans IDE
NetBeans IDE is a free, open source, integrated development

environment (IDE) that enables you to develop desktop, mobile

and web applications. The IDE supports application development

in various languages, including Java, HTML5, PHP and C++. The

IDE provides integrated support for the complete development

cycle, from project creation through debugging, profiling and

deployment. The IDE runs on Windows, Linux, Mac OS X, and

other UNIX-based systems. NetBeans offers features such as:

drag and drop GUI Creation, excellent editing , web services,

excellent debugging,wizards,code generation and management

tools.Java SDK along with NetBeans can be installed from

http://java.sun.com/javase/downloads/netbeans.html

WRITE

NETBEANS WINDOW

NETBEANS WINDOW

Titlebar The titlebar is on the top of the window, containing

the name of application.

Menubar Below the title bar, there is a menu bar. It contains

many options, i.e. pull down menu. These options can be

used to perform various tasks.

Toolbar Tool bar contains many small icons for performing

various tasks.

GUI Builder It is also known as Design Area or Design

Space. It is an area to place components and construct GUI

application visually. There are two types of views of the GUI

builder, the Design View and the Source View

WRITE

NETBEANS WINDOW

In Design View, you can see the user interface of your

application while in Source View, you can add/edit the code

for your application. We can switch over from one view to

another by simply clicking on the source and design tabs

directly above the Design Area.

Palette Palette contains controls or components used to

create GUI applications.

Inspector Window This window is used to display a

hierarchy of all the components or controls placed on the

current form.

WRITE

NETBEANS WINDOW

Properties Window Using this window, we can make

changes in the properties of currently selected control on the

form.

Code Editor Window It is the area where we write code for

our Java applications. This window is displayed when we

click on the source tab.

WRITE

NETBEANS WINDOW

Components

Components are also known as Widgets(Windows gadgets).

These are the basic interface elements. User interacts with

JLabel, JButton, JTextField, etc. Components are placed on

a container (like the JFrame).

There are two types of controls:

Parent or Container Controls They act as a background for

other controls, e.g. Frame.When we delete a parent control,

all its child controls also get deleted. When we move a

parent control, all its child controls also move along with it.

Child Controls Controls placed inside a container control

are called child controls, e.g. TextField, Label, Button, etc.

WRITE

GRAPHICAL USER INTERFACE(GUI)

BASICS OF A GUI

GUI stands for Graphical User Interface. It refers to the

windows, buttons, dialogs, menus and everything visual in

modern application.

Working of windows, Events and messages.

A window can be thought or as a simply rectangular region

with its own boundaries. Examples are a document window

or a dialog box etc. There are many other type of windows, a

command button is also a window.Icons,text boxes, option

buttons and menu bars are all windows.

WRITE

GRAPHICAL USER INTERFACE(GUI)

The windows operating system manages all type of

windows by assigning each one a unique id number

(called the windows handle) The system continually monitors

each of these windows for sign of activity or events.

An event refers to the occurrence of an activity

Each time an event occurs, it causes a message to be sent

to the operating system.

A message is the information/Request sent to the

application.

WRITE

GRAPHICAL USER INTERFACE(GUI) IN JAVA

In Java, GUI features are supported via JFC (Java

Foundation Classes) which encompass a group of features

for building GUI’s and adding rich graphics functionality and

interactivity to Java applications.

One major feature of JFC is Swing API, which includes

everything from buttons to tables and all functionality to

create a GUI application. The components that you can use

for creating GUI in JAVA are available through Swing API.

A component is an object that defines a screen element

such as a push button, text field, scroll bar, menu etc.

WRITE

GRAPHICAL USER INTERFACE(GUI) IN JAVA

Types of graphical components

A control is also known as a widget(windows gadget)

The graphical controls that you put in GUI application are

broadly of two types:

1. Container control: It is a control that holds other

controls within it. Eg: Panel or Panes or Frames

2. Child Control: Controls inside a container are known as

child controls. Child controls can exist completely inside

their containers. Eg: Label, Button,Text field etc.

WRITE

GRAPHICAL CONTROLS OF SWING

1. JFrame The JFrame is used to display a separate window

with its own title bar.

2. JLabel The JLabel is used to display uneditable text. It

means the user cannot change the information.

3. JTextField The JTextField is used to display a text box. In

this text box, the user can input or edit the data.

4. JPasswordField does not directly display its content.

Infact it uses a single character (usually an ASTERISK) to

represent each character that it contains, so that it is

possible to see how many characters have been typed, but

not what they are. As its name suggests, JPasswordField is

intended to be used as a simple way to accept a users

password. JPasswordField is derived from JTextField.

WRITE

GRAPHICAL CONTROLS OF SWING

5.JButton The JButton displays a push button. The push

button is used to generate the associated action event.

6. JCheckBox The JCheckBox is used to display a check

box. The check box is used to allow the user to select

multiple choices out of given choices. When the user selects

a particular choice, a ‘✓’ is shown in front of it.

7. JList The JList displays a list for the application. We can

select multiple elements from this list.

8. JComboBox The JComboBox provides a drop-down list

of items. We can select an item from this list. Also, we can

add a new item in the list. Infact, the combo box is a

combination of a list and a text field.

GRAPHICAL CONTROLS OF SWING

8. JPanel The JPanel is used to organise the components in

a GUI application. It is a supporting container, which cannot

be displayed but can be added to another container.

9. JRadioButton The JRadioButton provides the radio

buttons for the application. During the execution of a

program, we can set these radio buttons either ON or OFF.

WRITE

WRITE

Swing Controls Methods and Properties: These are the Swing Controls available
with Netbean IDE and their concern methods and properties are given below.

WRITE

WRITE

Focus: The control under execution is said to have the focus.
The control having the focus obtains input from the user.

getText(): getText() method is used to obtain the text from a
jTextField during the run time.

setText(): setText() method is used to set or change the text of
a jTextField during run time.

WRITE

WRITE

WRITE

Java Character Set

Character set refers to a set of valid characters that the language

can recognise. In Java, Unicode characters are used.

Token

The token refers to the smallest unit of a program. In Java

language, many tokens are used. These are keywords, identifiers,

literals, punctuators and operators.

(i) Keywords The keywords are the reserved words defined in the

language compiler. These reserved words are used for special

purpose and cannot be used for any other purpose such as an

identifier name.

WRITE

Commonly used keywords are as follows:

WRITE

(ii) Identifiers The identifiers are used for naming different items

of the programs such as variables, characters, classes, functions,

arrays, etc.

The identifiers are subject to following rules:

1.The identifier cannot be a reserved word.

2.The identifier cannot start with a digit.

3.It must start with an alphabet, dollar sign or an underscore.

4.It can contain alphabets, digits, underscore and dollar sign.

5.There is no limit on the length of the identifier.

Valid identifiers:

Myfile _sum MYSALARY Avg_sal

WRITE

Note Java is a case sensitive language and we can use both

uppercase and lowercase characters for naming an identifier.

Here, a name written in uppercase is different from the same

name written in lowercase (e.g. a and A are two different

identifiers).

Invalid identifiers:

DATA-REC - It contains special character –(hyphen)

29CLCT - Starting with digit

break - reserved keyword

My.file - contains special character

WRITE

(iii) Literals The literals or the constants are those items, whose

values cannot be changed during the execution of the program.

There are number of literals used in a Java program. These are

integer literals, floating literals, boolean literals, character literals,

string literals and null literals.

(a) Integer Literals The integer literals are the whole numbers

without any fractional part. We can enter the integers as decimal

numbers (base 10), octal numbers (base 8) and hexadecimal

numbers (base 16).

The decimal number is entered as a number which begins with a

non-zero digit (e.g. 35), for an octal number we have to enter the

number that begins with a zero (e.g. 026) and a hexadecimal

number must start with Ox or OX. (e.g. 0x2B).

WRITE

(b) Floating Literals The floating literals or the real numbers are

those numbers which have fractional part. The numbers can be

written either in fractional form or in exponential form.

e.g. 35.45. To write 5.3 x 103, we have to write 5.3E03 or 5.3e03.

(c) Boolean Literals The boolean type literals can have a

boolean type value i.e. either true or false.

(d) Character Literals The character literal is one character

enclosed in a single quotes, e.g. ‘a’.

(e) String Literals When multiple characters are entered such as

a name of a person or a place. The string literals are enclosed by

double quotes, e.g. “xyz”.

(f) Null Literals The null type literal has only null value. It is

formed by a literal null.

WRITE

WRITE

(iv) Punctuators (or Separators) A punctuator is a token that has

syntactic and semantic meaning to the compiler, but the exact

significance depends on the context. A punctuator can also be a

token that is used in the syntax of the preprocessor.

(v) Operators There are several kinds of operators. Operators

are used in expression to describe operations involving one or

more operands. In the expression a + b, ‘+’ is an operator

involving two operands (a and b).

WRITE

WRITE

DATA TYPES

Java like any other programming language provides ways

and facilities to handle different types of data by providing

data types.

Data types are means to identify the type of data and

associated operations of handling it.

Java data types are of two types.

1. Primitive Data Types:

The Java programming language is statically typed, which means

that all variables must first be declared before they can be used.

A primitive type is predefined by the language and is named by a

reserved keyword. The eight primitive data types supported by the

Java programming language are:

■ byte: The byte data type is an 8 bit signed two’s complement

integer. It has a minimum value of 128 and a maximum value of

127 (inclusive).

WRITE

DATA TYPES

■ short: The short data type is a 16 bit signed two’s complement

integer. It has a minimum value of 32,768 and a maximum value

of 32,767 (inclusive).

■ int: The int data type is a 32 bit signed two’s complement

integer. It has a minimum value of 2,147,483,648 and a maximum

value of 2,147,483,647 (inclusive).

■ long: The long data type is a 64 bit signed two’s complement

integer. It has a minimum value of 9,223,372,036,854,775,808

and a maximum value of 9,223,372,036,854,775,807(inclusive).

■ float: The float data type is a single precision 32 bit IEEE 754

floating point.

■ double: The double data type is a double precision 64 bit IEEE

754 floating point.

WRITE

DATA TYPES

■ boolean: The boolean data type has only two possible values:

true and false. Use this data type for simple flags that track

true/false conditions.

■ char: The char data type is a single 16 bit Unicode character. It

has a minimum value of ‘\u0000’ (or 0) and a maximum value of

‘\uffff ‘ (or 65,535 inclusive).

2. Reference Data Types: These are constructed by using

primitive data types, as per user need.

Reference data types store the memory address of an object.

Class, store the memory address of an object.

Class, Interface and Array are the example of Interface Reference

Data types.

WRITE

Text Interaction Methods in Java

For text interaction in Java usually following types of methods are

used:

(i) getText() Method get text from a GUI component.

The getText() method is used to return the text stored in the text

based GUI component such as a text box. e.g. if the variable

name is jTextField1, then to obtain text from the jTextField1 text

field. We need to type following statement:

String Name = jTextField1.getText();

(ii) setText() Method set text into a GUI component.

A setText() method is used to store or change text in a text field,

e.g. to change a text in a text field named stuName we need to

write: jTextField1.setText(“Kritika”):

WRITE

Non-GUI Output Methods

For displaying an output on console window (or terminal window) in a Java

program, we can use either of two methods i.e. System.out.print() or

System.out.println().

1. System.out.print() -This method displays the text and keeps the cursor
in the same line.

e.g. System.out.print(“Welcome to Java Programming”);

2. System.out.println() -This method displays the text and then moves the
cursor to the next line.

e.g. System.out.println(“Java Programming is fun”);

WRITE

VARIABLES

Variables represent named storage locations, whose value can be

manipulated during program run. For instance, to store the name

of a student and marks of a student during a program run, we

require storage locations that too named so that these can be

distinguished easily.

A Variable is a named memory location, which holds a data

value of a particular data type.

Declaration of a variable:

Syntax :

type varaiblename ;

Eg: (declaring an integer with the variable name age)

int age ;

WRITE

VARIABLES

Initialization of variables

The first value given to a variable at the time of declaration itself is

known as initialization of a variable.

Eg:

int val = 100 ;

String name = “Rohan” ;

float amount = 5000.75 ;

Dynamic Initialization

The expression that initializes a variable can be an

expression with

int a = 5 , b = 10 ;

double c = Math.sqrt(a*a + b*b) ; // here variable ‘c’ is

initialized by the return value of the square root method of

the built-in Math class

WRITE

Constant

To make a variable as a constant, final keyword is used. Such value

cannot be changed during the execution of the program.

e.g. final float PI = 3.14;

Text Interaction Methods in Java

For text interaction in Java usually following types of methods are

used:

WRITE

WRITE

WRITE

WRITE

WRITE

AND (&&) OPERATOR EXAMPLE

WRITE

OR (||) OPERATOR EXAMPLE

WRITE

WRITE

WRITE

WRITE

WRITE

WRITE

Q. Design an application to accept two integers in the text boxes and find its

sum and display the result in a text box as shown below. The result is

displayed when you click the “Calculate Sum” Button.

WRITE

Q. Design an application to accept two integers in the text boxes and find its

sum and display the result in a text box as shown below. The result is

displayed when you click the “Calculate Sum” Button.

Step1: Open the NetBeans, click File - > new project

WRITE

Q. Design an application to accept two integers in the text boxes and find its

sum and display the result test box as shown below. The result is

displayed when you click the “Calculate Sum” Button.

Step 2: click Java on categories and select Java Application on Projects and

then click next

WRITE

Step 3: Give the project name as ADDNUMBERS . Disable the tick mark on

“Create Main Class” at the bottom of the page. Click the Finish button

WRITE

Step 4: Select ADDNUMBERS available in the Projects window , Right click

and selsect JFrame Form

WRITE

Step 5: You will see now the design window as shown below

WRITE

Step 6: Drag 3 labels and 3 textboxes and an OK button control from the swing

controls to the form as shown below

WRITE

WRITE

Step 7: Type the following code under jButtonActionPerformed

WRITE

Step 8: Go to the Run menu and select Run File

WRITE

Step 9: Enter 2 integers in the first and second text boxes and click the button Calculate Sum

WRITE

Create the following GUI form Accept the title, First name, Last name Class

and Section and display the information as shown below in a TextArea after

clicking the Generate button at run time.

WRITE

Generate Button coding

String text1 = jTextField1.getText();

String text2 = jTextField2.getText();

String text3 = jTextField3.getText();

String text4 = jTextField4.getText();

String text5 = jTextField5.getText();

jTextArea1.append(“Student Details” + “\n”);

jTextArea1.append(“Name: ” +text1+ “ ” +text2+ “ ” +text3+“\n”);

jTextArea1.append(“Class: ” +text4+ “ ” +text5) ;

WRITE

Design an application that the shows all arithmetic operations

WRITE

Design an application that the shows all arithmetic operations

WRITE

CODE for ‘+’ Button

jLabel2.setText(“+”) ;

double num1 = Double.parseDouble(jTextField1.getText()) ;

double num2 = Double.parseDouble(jTextField2.getText()) ;

double num3 = num1 + num2 ;

jTextField3.setText(“ “+num3) ;

WRITE

CODE for ‘-’ Button

jLabel2.setText(“-”) ;

double num1 = Double.parseDouble(jTextField1.getText()) ;

double num2 = Double.parseDouble(jTextField2.getText()) ;

double num3 = num1 - num2 ;

jTextField3.setText(“ “+num3) ;

WRITE

CODE for ‘*’ Button

jLabel2.setText(“*”) ;

double num1 = Double.parseDouble(jTextField1.getText()) ;

double num2 = Double.parseDouble(jTextField2.getText()) ;

double num3 = num1* num2 ;

jTextField3.setText(“ “+num3) ;

WRITE

CODE for ‘/’ Button

jLabel2.setText(“/”);

double num1 = Double.parseDouble(jTextField1.getText()) ;

double num2 = Double.parseDouble(jTextField2.getText()) ;

double num3 = num1 / num2 ;

jTextField3.setText(“ “+num3) ;

WRITE

CODE for ‘%’ Button

jLabel2.setText(“%”);

double num1 = Double.parseDouble(jTextField1.getText()) ;

double num2 = Double.parseDouble(jTextField2.getText()) ;

double num3 = num1 % num2 ;

jTextField3.setText(“ “+num3) ;

WRITE

EXPRESSIONS

An expression in JAVA is any valid combination of operators, constants

and variable.

The expressions in JAVA can be of any type:

• Arithmetic expressions

• Compound expressions

• Relational(or Logical) expressions

WRITE

EXPRESSIONS

• Arithmetic expressions

Arithmetic expressions can either be pure integer expressions or pure

real expressions, sometimes a mixed expressions can also be formed.

Integer expressions are formed by connecting integer constants or

integer variable using arithmetic operators.

final int count = 30 ;

int I,J,K,X,Y,Z ;

Valid integer expressions:

i) I ii) K – X iii) K + X –Y + count iv) –J + K * Y

WRITE

EXPRESSIONS

• Arithmetic expressions

Real expressions are formed by connecting real constants or real variable

using arithmetic operators.

final float bal = 250.53f ;

float qty, amount, value ;

double fin, inter ;

Valid real expressions:

i) qty/amount ii) qty * value iii) (amount + qty* value) – bal

iv) fin + qty * inter v) inter –(qty * value)+ fin

WRITE

Some useful Math Functions available through Math Class

WRITE

Write the corresponding JAVA expressions for the following

mathematical expressions

WRITE

TYPE CONVERSION

The process of converting one predefined type into another is called

Type Conversion.

JAVA facilitates the type conversion in two forms:

• Implicit type conversion

• Explicit type conversion

Implicit type conversion

An implicit type conversion is performed by the compiler without the

programmer’s intervention. An implicit conversion is applied generally

whenever differing data types are intermixed in an expression.

The implicit type conversion wherein data types are promoted is known

as Coercion.

WRITE

WRITE

TYPE CONVERSION

Explicit type conversion

An explicit type conversion is user defined that forces an expression to

be of a specific type.

The explicit conversion of an operand to a specific type is called Type

Casting.

Example: To make sure that (x+ y/2) evaluates to type float, write

it as:

(float) (x + y/ 2)

WRITE

EXPRESSION EVALUATION

Expressions can either be pure expressions or mixed expressions.

Pure expressions have all operands of same data types, mixed

expressions have operands of mixed data types.

Evaluating pure expressions

int a = 5, b = 2, c ;

a + b ; // will produce result 7 of int type

a/b ; // will produce result 2 of int type(it will not produce 2.5)

WRITE

EXPRESSION EVALUATION

Evaluating mixed expressions

In JAVA when a mixed expression is evaluated, it is first divided into

component sub-expressions upto the level of two operands and a

operator. Then the type of sub-expression is decided keeping in mind

general conversion rules.

Evaluate the following Java expression:

int a, mb = 2, k = 4 ;

a = mb * 3/4 + k/4 + 8 - mb + 5/8

Solution:

a = mb * 3/4 + k/4 + 8 - mb + 5/8

= (2 *3) / 4 + 4/4 + 8 - 2 + 5/8

= 6/4 + 1 + 8 - 2 + 0

= 1 + 1 + 8 - 2 + 0

= 10 - 2 = 8

WRITE

Boolean (Logical) Expression

The expressions that result into false or true are called Boolean

expressions. The Boolean expressions are combinations of constants,

variables and logical and relational operators.

The following are examples of some valid Boolean expressions:

i) x > y ii) (y + z) >= (x/z) iii) (a + b) > c && (c + d) > a

iv) (y > x) || (z < y) v) x|| y && z vi) (x)

vii) (-y) viii) (x – y) ix) (x – y) && (!y < z)

x) x <= !y && z

WRITE Compound Expressions

A compound expression is the one which is made up by combining

two or more simple expressions with the help of operator.

(a + b) / (c + d) is a compound expression

(a > b) || (b > c) is another compound expression

WRITE

JAVA STATEMENTS

A statement in Java forms a complete unit of execution. The following

types of expressions can be made into a statement by terminating the

expression with a semicolon(;)

• Assignment statement

• Any use of ++ or –

• Method calls

• Object creation expressions

WRITE

JAVA STATEMENTS

Here are some examples:

x = 345.666 ; // assignment statement

y++ ; // increment statement

System.out.print(x) ; // method call

Integer integerobject = new Integer(4) ; // Object creation statement

double z = 345.768 ; // declaration statement

WRITE

JAVA STATEMENTS

Block

A block is a group of zero or more statements between balanced

braces and can be used anywhere , a single statement is allowed.

Eg:

if(a < b)

{

…….

……..

……

}

WRITE

JAVA STATEMENTS

Null or Empty Statement

In Java programs, statements are terminated with a semicolon(;). The

simplest statement of them all is the empty, or null statement. A null

statement is useful in those instances where the syntax of the

language requires the presence of a statement but where the logic of

the program does not.

It takes the following form:

;
It is a null or

empty statement

WRITE

JAVA STATEMENTS

Constructs of Java Program

In a Java program, the specified statements can be executed either
sequentially, selectively or repeatedly.

Sequence- Normally, the statements of a Java program are executed
sequentially, i.e. in the same order as they are specified in a program.

Selection- When we need to execute the program selectively, we have to use
a conditional statement.

Iteration -When there is a need for executing certain statements repeatedly,
we have to use a loop structure or iteration statement.

WRITE

JAVA STATEMENTS

1. Selection Statements
The selection statements are used to execute a statement or a group of
statements depending upon a given condition.

There are following selection statements used in Java language:
(i) The if statement The if statement tests a given condition, if the

given condition evaluates to true, the associated statements will be

executed otherwise the control of the program will be transferred to

the next statement.

The syntax of if statement is as follows:
if(condition)

statements;

e.g.

if(i==5)

System.out.println(“Five”);

WRITE

JAVA STATEMENTS

(ii) The if-else statement- The if-else statement is an extension of the

if statement. In this format, the given test condition will be evaluated, if

the condition is evaluated to true one set of statements will be

executed otherwise another set of statements will be executed.

The syntax of if-else statement is as follows:

if(condition)

statement 1;

else

statement 2;

WRITE

JAVA STATEMENTS

(iii) Nested if statement When an if statement is inside another if or

if-else statement, then it is called Nested if statement.

The general syntax of this statement is as follows:
(a)
if(condition 1)

{ if(condition 2)

statement 1;

else

statement 2;

}

else

statement 3;

WRITE

JAVA STATEMENTS

(b)

if(condition 1)

statement 1;

else

{ if(condition 2)

statement 2;

else

statement 3;

}

WRITE

JAVA STATEMENTS

(c)
if (condition 1)

{ if(condition 2)

statement 1;

else

statement 2;

}

else

{ if(condition 3)

statement 3;

else

statement 4;

}

WRITE

JAVA STATEMENTS

(c)
if (condition 1)

{ if(condition 2)

statement 1;

else

statement 2;

}

else

{ if(condition 3)

statement 3;

else

statement 4;

}

WRITE

JAVA STATEMENTS

(iv) The if-else-if ladder form -In this kind of statement, a number of

logical conditions are checked for executing various statements. This

is based upon the sequence of nested if and is often called the if-else-

if ladder.

General form:
if(condition)

statement;

else if(condition)

statement;

else if(condition)

statement;

else

statement;

WRITE

JAVA STATEMENTS

The switch statement- The switch statement is a multiple branch selection
statement. This statement tests a given condition. On the basis of the
evaluation of test condition against a list of integers or character constants,
the associated statements will be executed. The switch statements searches
for a specified match, when a match is found it will execute the statements
specified thereafter till the end of the structure or until the break statement
is found. The fall of control to the following cases of matching case, is called
Fall-Through. We can use an optional default with the switch statement. It
will be executed, when no match is found.

WRITE

JAVA STATEMENTS

The general syntax of switch is as follows:

switch(expression)

{ case value1: statement 1;

break;

case value2: statement 2;

break;

case value3: statement 3;

break;

default: statement;

}

WRITE

JAVA STATEMENTS

The general syntax of switch is as follows:

switch(expression)

{ case value1: statement 1;

break;

case value2: statement 2;

break;

case value3: statement 3;

break;

default: statement;

}

WRITE

Q. Design the following application to find the largest and smallest of

two integers entered in the two text boxes. Depending on the selection

from the radio buttons(LARGEST OR SMALLEST) ,once you click OK

button the answer should be displayed in the result in the text boxes.

Radio

Buttons

TextField Box

Labels

TextField Box

Button

WRITE

Code for OK button

int n1,n2 ;

n1 = Integer.parseInt(jTextField1.getText());

n2 = Integer.parseInt(jTextField2.getText());

if(jRadioButton1.isSelected())

{ if (n1> n2)

jTextField3.setText(" "+n1) ;

else

jTextField3.setText(" "+n2) ;

}

if(jRadioButton2.isSelected())

{

if(n1 < n2)

jTextField3.setText(" "+n1);

else

jTextField3.setText(" "+n2);

}

WRITE

Code for disabling the textfield3

public class LARGEST extends javax.swing.JFrame {

/** Creates new form LARGEST */

public LARGEST() {

initComponents() ;

jTextField3.setEditable(false) ;

}

WRITE

Q. Design the following application to accept marks

for 5 subjects of a student and find the total marks,

average marks and grade depending on the total

marks scored by the student. The grade should be

calculated according to the following criteria.

Total Marks Grade

400 – 500 A

300 – 399 B

200 - 299 C

100 – 199 D

less than 100 E

WRITE

EXIT

WRITE

code for CALCULATE button click

int m1, m2, m3, m4, m5 ;

float avg=0,tot=0 ;

char grade ;

m1 = Integer.parseInt(jTextField1.getText()) ;

m2 = Integer.parseInt(jTextField2.getText()) ;

m3 = Integer.parseInt(jTextField3.getText()) ;

m4 = Integer.parseInt(jTextField4.getText()) ;

m5 = Integer.parseInt(jTextField5.getText()) ;

tot = (m1+ m2+m3+m4+m5) ;

avg = tot / 5;

jTextField6.setText(" "+avg);

jTextField7.setText(" "+tot);

WRITE

if((tot >= 400) && (tot <= 500))

grade = 'A' ;

else if((tot >= 300) && (tot <= 399))

grade = 'B' ;

else if((tot >= 200) && (tot <= 299))

grade = 'C' ;

else if((tot >= 100) && (tot <= 199))

grade = 'D' ;

else

grade = 'E' ;

jTextField8.setText(" "+grade);

WRITE

code for EXIT Button click

System.exit(0) ;

WRITE

Q. Design the following GUI application to accept the Principal

amount, Rate of interest and Number of years from the user and

find the Simple Interest using the formula SI= (P*R*T)/100.

The simple interest should be displayed in the texfield box when

you click the “CALCULATE SI” button. If you click the “ CLEAR”

button all the values appearing in the all the textfield boxes

should be cleared.

WRITE

Code for CALCULATE SI BUTTON

float P,R,T,SI ;

P = Integer.parseInt(jTextField1.getText()) ;

R = Integer.parseInt(jTextField2.getText()) ;

T = Integer.parseInt(jTextField3.getText()) ;

SI = P * R* T/ 100 ;

jTextField4.setText(" "+ SI);

WRITE

Code for CLEAR BUTTON

jTextField1.setText(" ");

jTextField2.setText(" ");

jTextField3.setText(" ");

jTextField4.setText(" ");

WRITE

Code for DISABLING THE TextField4 box

public SIANDCI() {

initComponents();

jTextField4.setEditable(false);

}

WRITE

WRITE

WRITE

WRITE

CODE FOR FAHRENHEIT BUTTON

double temp = Double.parseDouble(jTextField1.getText()) ;

If(temp > 32)

jLabel3.setText(“This temperature (in F 0) is not freezing “) ;

else

jLabel3.setText(“This temperature (in F 0) is freezing “) ;

WRITE

CODE FOR CELCIUS BUTTON

double temp = Double.parseDouble(jTextField1.getText()) ;

If(temp > 0)

jLabel3.setText(“This temperature (in c 0) is not freezing “) ;

else

jLabel3.setText(“This temperature (in c 0) is freezing “) ;

WRITE

Q. Create an application that obtains day(1-31), month(1-12) and

year(>0) from the user and displays in dd-Mon-yyyy format.

e.g., if user has entered as 13,04,2009 as day,month and year,

then it should display date as 13-APR-2009

WRITE

Q. Your school organizes a Life Skills camp. At the end of it, the

school want the participants to give feedback by rating it in form

of 1- 5 stars. Compiled feed back should be listed

WRITE

CODE FOR FORMAT DATE BUTTON

int day = Integer.parseInt(jTextField1.getText());

int mon = Integer.parseInt(jTextField2.getText());

int year = Integer.parseInt(jTextField3.getText());

switch(mon)

{ case 1: jLabel5.setText(“ ” +day+ “-” + “JAN” + “-” + year) ;

break ;

case 2: jLabel5.setText(“ ” +day+ “-” + “FEB” + “-” + year) ;

break ;

case 3: jLabel5.setText(“ ” +day+ “-” + “MAR” + “-” + year) ;

break ;

WRITE

case 4: jLabel5.setText(“ ” +day+ “-” + “APR” + “-” + year) ;

break ;

case 5: jLabel5.setText(“ ” +day+ “-” + “MAY” + “-” + year) ;

break ;

case 6: jLabel5.setText(“ ” +day+ “-” + “JUN” + “-” + year) ;

break ;

case 7: jLabel5.setText(“ ” +day+ “-” + “JUL” + “-” + year) ;

break ;

case 8: jLabel5.setText(“ ” +day+ “-” + “AUG” + “-” + year) ;

break ;

case 9: jLabel5.setText(“ ” +day+ “-” + “SEP” + “-” + year) ;

break ;

WRITE case 10: jLabel5.setText(“ ” +day+ “-” + “OCT” + “-” + year) ;

break ;

case 11: jLabel5.setText(“ ” +day+ “-” + “NOV” + “-” + year) ;

break ;

case 12: jLabel5.setText(“ ” +day+ “-” + “DEC” + “-” + year) ;

break ;

}

WRITE

Q. Create an application that obtains an integer from the user in the Textbox and

checks whether it is an odd number or even number and display it in the label as

shown below. The result should be displayed when you click the CHECK button.

The contents in the Textbox and the result displayed in the label should be

cleared when you press the clear button.

BUTTON CONTROLS

LABEL CONTROLS

Textbox

WRITE

CODE FOR CHECK BUTTON

int num =Integer.parseInt(jTextField1.getText());

if(num%2==0)

jLabel4.setText("EVEN NUMBER");

else

jLabel4.setText("ODD NUMBER");

WRITE

CODE FOR CLEAR BUTTON

jLabel4.setText(" ");

jTextField1.setText("");

WRITE

Q. Create an application as shown below. The user can select any one, two or

all three sports from the check box, depending on the selection when you click

the OK button. The selected sports names will be displayed in a label as shown.

When you click the EXIT button the program should stop.

CHECKBOX CONTROLS

LABEL CONTROL

BUTTON CONTROLS

WRITE

CODE FOR OK BUTTON

if(jCheckBox1.isSelected() && jCheckBox2.isSelected() && jCheckBox3.isSelected())

jLabel1.setText("You have selected Cricket, Football and Tennis");

else if(jCheckBox1.isSelected() && jCheckBox2.isSelected())

jLabel1.setText("You have selected Cricket and Football");

else if(jCheckBox1.isSelected() && jCheckBox3.isSelected())

jLabel1.setText("You have selected Cricket and Tennis");

else if(jCheckBox2.isSelected() && jCheckBox3.isSelected())

jLabel1.setText("You have selected Football and Tennis");

WRITE

CODE FOR OK BUTTON(Continuation)

else if(jCheckBox1.isSelected())

jLabel1.setText("You have selected Cricket");

else if(jCheckBox2.isSelected())

jLabel1.setText("You have selected Football");

else if(jCheckBox3.isSelected())

jLabel1.setText("You have selected Tennis");

WRITE CODE FOR EXIT BUTTON

System.exit(0);

WRITE

Q.Create an application as shown below. It accepts Login id and password from

the user. If correct password, it displays a message in a Label as “Password

Valid, Entry granted” and if the password is incorrect then it will display in the

Label “Password Invalid, Entry not granted”. welcome is the correct password.

LABEL CONTROL

BUTTON CONTROL

TEXTFIELD CONTROL

PASSWORDFIELD CONTROL

WRITE

CODE FOR SUBMIT BUTTON

String str;

str = new String(jPasswordField1.getPassword());

if(str.equals("welcome"))

jLabel3.setText("Password Valid, Entry granted");

else

jLabel3.setText("Password Invalid, Entry denied")

WRITE

Q. Create an application as shown below. It accepts Bill amount from the user.

The user has to select the customer type (NEW/SILVER / GOLD / PLATINUM)

from the COMBO BOX, if NEW- No discount, Silver- 10% Discount , Gold- 20%

discount, Platinum- 30% Discount. The final amount should be displayed when

the CALCULATE button is clicked. The program should end when STOP button

is clicked.

LABEL CONTROL

BUTTON CONTROL

TEXTFIELD CONTROL

COMBOBOX CONTROL

TEXTFIELD CONTROL

WRITE

CODE FOR CALCULATE BUTTON

double Famt = 0;

double Bamt = Double.parseDouble(jTextField1.getText());

switch(jComboBox1.getSelectedIndex())

{

case 0: Famt = BAmt;

break;

case 1: Famt = Bamt * 0.9 ;

break;

case 2: Famt = Bamt * 0.8 ;

break;

case 3: Famt = Bamt * 0.7 ;

break;

default : Famt = BAmt;

}

jTextField2.setText (" “ +Famt) ;

WRITE

CODE FOR STOP BUTTON

System.exit(0) ;

WRITE

Q. Create an application as shown below. It accepts Bill amount from the user.

The user has to select the customer type (NEW/SILVER / GOLD / PLATINUM)

from the COMBO BOX, if NEW- No discount, Silver- 10% Discount , Gold- 20%

discount, Platinum- 30% Discount. The final amount should be displayed when

the CALCULATE button is clicked. The program should end when STOP button

is clicked.

LABEL CONTROL

BUTTON CONTROL

RADIOBUTTON CONTROL

BUTTON CONTROL

WRITE

CODE FOR OK BUTTON

if(jRadioButton1.isSelected())

jLabel2.setText("You have selected SCIENCE stream");

else if(jRadioButton2.isSelected())

jLabel2.setText("You have selected COMMERCE stream");

else if(jRadioButton3.isSelected())

jLabel2.setText("You have selected HUMANITIES stream");

WRITE

CODE FOR EXIT BUTTON

System.exit(0) ;

WRITE

Q. Create an application as shown below. It accepts an alphabet in a TextField

box and checks whether it is a vowel or a consonant and displays the message

on another TextField box when the CHECK button is clicked. The program

should end when STOP button is clicked.

LABEL CONTROL

TEXTFIELD CONTROL

BUTTON CONTROL

WRITE

CODE FOR CHECK BUTTON

String s ;

s = jTextField1.getText();

s = s.toLowerCase();

char c = s.charAt(0);

if(c== 'a'|| c== 'e‘ || c== 'i‘ || c=='o‘ || c=='u‘)

jTextField2.setText("vowel");

else

jTextField2.setText("consonant");

WRITE

CODE FOR STOP BUTTON

System.exit(0) ;

WRITE

CODE FOR STOP BUTTON

System.exit(0) ;

WRITE

Dialog Box

A dialog box is a small separate sub-window that

appears on the screen for providing/requesting

information to/from the users. According to the Java

documentation, “A dialog window is an independent

sub-window meant to carry temporary notice apart from

the main Swing Application Window”.

In Java language, the dialog box is supported by the

Java Swing control. It supports the following types of

controls:

WRITE

1. JDialog

The JDialog is a Swing window dialog which provides

the normal behaviour of a window. It displays a dialog

box which has minimize, maximize and close icon in

the title bar of the dialog box.

2. JOptionPane

In Java language, the JOptionPane is used to create a

pop-up window with varied contents. It can display an alert

message box or an input box.

WRITE

Structure of JOptionPane

The basic elements of JOptionPane are as follows:

1.Icon-The icon determines the type of dialog box or

message box. There are four default options available.

These are error, information, warning and question.

2.Message- The message option is used to set the text

information that we want to convey through the dialog box.

3.Input area-The input area allows the user to provide a

response in the form of an input. For user response, we

can use JTextField, JComboBox or JList.

4.Button- The button area display a set of buttons such as

OK/Cancel, Yes/No, etc. The buttons can be customised

according to the user’s requirements.

WRITE

Dialog Box Type

We can create four types of predefined dialog boxes. These are

as follows:

1.Input dialog- This type of dialog box is used to enter the data.

We can use JTextField, JComboBox or JList. There are two

buttons OK and Cancel.

To create an input dialog box, the showInputDialog() method

is used.

2.Confirm dialog- This type of dialog box is used to ask from

the user about the confirmation of any information. It includes

buttons Yes / No, OK and Cancel, etc.

To create a confirm dialog box, the showConfirmDialog()

method is used.

WRITE
3.Message dialog- The message dialog box is used to simply

display some information to the user. It includes only a single OK

button.

To create a message dialog box, the showMessageDialog()

method is used.

4.Option dialog -The option dialog is a flexible type. It can be

used to create a dialog box according to the user’s need.

To create an option dialog box, the showOptionDia!og() method

is used.

WRITE

Message Type

The icon of the JOptionPane is specified through

the message type value. The possible values are

as follows:

WRITE

Option Type

In Java language, the showConfirmDialog() and

showOptionDialog() methods are used to show the

confirm dialog box and option dialog box respectively

and have choice to select which buttons will be

displayed in the dialog box. This could be done

through the ‘option type’ in the properties window.

WRITE

Tables

We know that some times we need to display some

information in tabular form. In Java language, the JTable

component of Swing API of Java is used to create a table.

Property

Model :This property is used to set the model that is the

source of the data for the table.

Methods

1.int getColumnCount()- This method returns the number

of columns in the table.

2.int getRowCount()- This method returns the number of

rows in the table.

3.TableModel getModel()- This method returns the table

model that provides the data displayed by this JTable.

4.Object getValueAt (int row, int column)- This method

returns the cell value at row and column.

WRITE

Q. Create an application to accept the age of a person and check whether

eligible to vote or not. If age >= 18 Display in JOptionPane Dialog box ,

“You are eligible to VOTE” or else “You are NOT eligible to VOTE”.

WRITE
CODING FOR CHECK BUTTON

int x = Integer.parseInt(jTextField1.getText()) ;

if(x>=18)

JOptionPane.showMessageDialog(null,"You are eligible To VOTE");

else

JOptionPane.showMessageDialog(null,"You are NOT eligible To VOTE");

WRITE CODING STOP BUTTON

System.exit(0);

WRITE

Q. Create an application to accept the price for 1 apple and calculate the

amount for one dozen and two dozen apples by clicking the buttons. The

Amount to be paid is displayed in the non- editable text box.

WRITE

CODING FOR ONE DOZEN BUTTON

int P = Integer.parseInt(jTextField1.getText());

int one_dozen = 12 * P ;

jTextField2.setText(""+one_dozen);

WRITE

CODING FOR TWO DOZEN BUTTON

int P = Integer.parseInt(jTextField1.getText());

int two_dozen = 24 * P ;

jTextField2.setText(""+two_dozen);

WRITE

CODING FOR STOP BUTTON

System.exit(0);

WRITE

Q.Design a GUI application in java to convert kilograms into grams,
litres into milliliters, rupees into paise using combobox and text fields.
The result is displayed in a non-editable Textbox.

WRITE

CODING FOR CONVERT BUTTON

double gm = 0,ml =0, paise = 0;

double val = Double.parseDouble(jTextField1.getText());

switch(jComboBox1.getSelectedIndex())

{

case 0: gm = val *1000;

jTextField2.setText(+val+ "KG=“ +gm+ "Grams");

break;

case 1: ml = val *1000;

jTextField2.setText(+val+ "L=“ +ml+ "Ml");

break;

case 2: paise = val*100;

jTextField2.setText("Rs.“ +val+ "=“ +paise+ "paise");

break;

default: jTextField2.setText("INVALID CHOICE");

}

WRITE

CODING FOR STOP BUTTON

System.exit(0);

WRITE

Q. A book publishing house decided to go in for computerization. The
database will be maintained at the back end but you have to design the
front end for the company. You have to accept book code, Title, Author
and Quantity sold from the user. The Price will be generated depending
upon the book code(use radiobuttons).

Net price should be calculated on the basis of the discount given.

Book code Discount

•Book seller - 25%

• School - 20%

•Customer - 5%

WRITE

WRITE

CODING FOR CALCULATE BUTTON

double amt =0, netamt = 0, qty = 0 ;

amt = Double.parseDouble(jTextField3.getText());

qty = Double.parseDouble(jTextField4.getText());

if(jRadioButton1.isSelected())

netamt= qty * amt * 0.75 ;

else if(jRadioButton2.isSelected())

netamt= qty * amt * 0.80 ;

else if(jRadioButton3.isSelected())

netamt= qty * amt * 0.95 ;

jTextField5.setText(" "+netamt);

WRITE

CODING FOR STOP BUTTON

System.exit(0);

WRITE

Q. A networking company decided to computerize its employee
salary . Develop an application to store employee's personal data
which will be saved in the back end. The front end should accept
Name, Gender, Address and Basic Salary, Calculate DA and HRA, gross
and net salary based on the following criteria.

Basic DA HRA Deductions

>=40000 35% of Basic 37% of Basic 15% of Basic

>=20000 25% of Basic 32% of Basic 10% of Basic

>=10000 20% of Basic 30% of Basic 5% of Basic

< 10000 10% of Basic 20 % of Basic 2% of Basic

Gross Sal = Basic + HRA + DA

Net Sal = Gross Sal - Deductions

WRITE

WRITE

CODING FOR CALCULATE BUTTON

double bs=0,da=0,hra=0,ded=0,gross=0,net=0 ;

bs = Double.parseDouble(jTextField4.getText());

if(bs >= 40000)

{ da = 0.35 * bs ;

hra = 0.37 * bs ;

ded = 0.15 * bs ;

}

else if(bs >= 20000)

{ da = 0.25 * bs ;

hra = 0.32 * bs ;

ded = 0.10 * bs ;

}

else if(bs >= 10000)

{ da = 0.20 * bs ;

hra = 0.30 * bs ;

ded = 0.05 * bs ;

}

WRITE

else

{ da = 0.10 * bs ;

hra = 0.20 * bs ;

ded = 0.02 * bs ;

}

gross = bs + hra + da ;

net = gross - ded ;

jTextField5.setText(" "+da) ;

jTextField6.setText(" "+hra) ;

jTextField7.setText(" "+gross) ;

jTextField8.setText(" "+net) ;

WRITE

CODING FOR STOP BUTTON

System.exit(0);

WRITE

Q. Design a GUI application to accept the cost price and selling price
form the user in two text fields then calculate the profit or loss
incurred.

WRITE

CODING FOR CALCULATE BUTTON

double sp =0,cp =0 ;

cp = Double.parseDouble(jTextField1.getText());

sp = Double.parseDouble(jTextField2.getText());

if(sp > cp)

jTextField3.setText("Profit = "+(sp - cp));

else if(cp == sp)

jTextField3.setText(" No profit or Loss");

else

jTextField3.setText("Loss = "+(cp - sp));

WRITE

CODING FOR STOP BUTTON

System.exit(0);

WRITE

Q. Design a GUI application to accept the a number in a TextFiled box
and Check whether it is a Positive, Negative or Zero ,Display the
answer in Option Pane dialog box.

WRITE

CODING FOR CHECK BUTTON

float num;

num = Float.parseFloat(jTextField1.getText());

if(num > 0)

JOptionPane.showMessageDialog(null, "Positive number");

else if(num < 0)

JOptionPane.showMessageDialog(null, "Negative number");

else

JOptionPane.showMessageDialog(null, "Number is Zero");

WRITE

CODING FOR STOP BUTTON

System.exit(0);

